Combining Philosophers

All the ideas for Eubulides, J Baggini / PS Fosl and John Mayberry

expand these ideas     |    start again     |     specify just one area for these philosophers


52 ideas

2. Reason / B. Laws of Thought / 2. Sufficient Reason
The Principle of Sufficient Reason does not presuppose that all explanations will be causal explanations [Baggini /Fosl]
2. Reason / B. Laws of Thought / 3. Non-Contradiction
You cannot rationally deny the principle of non-contradiction, because all reasoning requires it [Baggini /Fosl]
2. Reason / C. Styles of Reason / 1. Dialectic
Dialectic aims at unified truth, unlike analysis, which divides into parts [Baggini /Fosl]
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
'Natural' systems of deduction are based on normal rational practice, rather than on axioms [Baggini /Fosl]
In ideal circumstances, an axiom should be such that no rational agent could possibly object to its use [Baggini /Fosl]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
There is a semi-categorical axiomatisation of set-theory [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
The principle of bivalence distorts reality, as when claiming that a person is or is not 'thin' [Baggini /Fosl]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
5. Theory of Logic / L. Paradox / 1. Paradox
If you know your father, but don't recognise your father veiled, you know and don't know the same person [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you say truly that you are lying, you are lying [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Removing one grain doesn't destroy a heap, so a heap can't be destroyed [Eubulides, by Dancy,R]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
9. Objects / F. Identity among Objects / 3. Relative Identity
If identity is based on 'true of X' instead of 'property of X' we get the Masked Man fallacy ('I know X but not Y') [Baggini /Fosl, by PG]
9. Objects / F. Identity among Objects / 4. Type Identity
'I have the same car as you' is fine; 'I have the same fiancée as you' is not so good [Baggini /Fosl]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
Leibniz's Law is about the properties of objects; the Identity of Indiscernibles is about perception of objects [Baggini /Fosl]
10. Modality / A. Necessity / 3. Types of Necessity
Is 'events have causes' analytic a priori, synthetic a posteriori, or synthetic a priori? [Baggini /Fosl]
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
'A priori' does not concern how you learn a proposition, but how you show whether it is true or false [Baggini /Fosl]
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / b. Basic beliefs
Basic beliefs are self-evident, or sensual, or intuitive, or revealed, or guaranteed [Baggini /Fosl]
14. Science / A. Basis of Science / 6. Falsification
A proposition such as 'some swans are purple' cannot be falsified, only verified [Baggini /Fosl]
14. Science / C. Induction / 1. Induction
The problem of induction is how to justify our belief in the uniformity of nature [Baggini /Fosl]
14. Science / C. Induction / 4. Reason in Induction
How can an argument be good induction, but poor deduction? [Baggini /Fosl]
14. Science / D. Explanation / 3. Best Explanation / a. Best explanation
Abduction aims at simplicity, testability, coherence and comprehensiveness [Baggini /Fosl]
To see if an explanation is the best, it is necessary to investigate the alternative explanations [Baggini /Fosl]
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
Consistency is the cornerstone of rationality [Baggini /Fosl]