Combining Philosophers

All the ideas for Engelbretsen,G/Sayward,C, M Fitting/R Mendelsohn and Jean Baudrillard

expand these ideas     |    start again     |     specify just one area for these philosophers


68 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
There is no longer anything on which there is nothing to say [Baudrillard]
1. Philosophy / H. Continental Philosophy / 1. Continental Philosophy
Some continental philosophers are relativists - Baudrillard, for example [Baudrillard, by Critchley]
2. Reason / A. Nature of Reason / 5. Objectivity
The task of philosophy is to unmask the illusion of objective reality [Baudrillard]
2. Reason / A. Nature of Reason / 9. Limits of Reason
Drunken boat pilots are less likely to collide than clearly focused ones [Baudrillard]
2. Reason / C. Styles of Reason / 1. Dialectic
Instead of thesis and antithesis leading to synthesis, they now cancel out, and the conflict is levelled [Baudrillard]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
The four 'perfect syllogisms' are called Barbara, Celarent, Darii and Ferio [Engelbretsen/Sayward]
Syllogistic logic has one rule: what is affirmed/denied of wholes is affirmed/denied of their parts [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Syllogistic can't handle sentences with singular terms, or relational terms, or compound sentences [Engelbretsen/Sayward]
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
Term logic uses expression letters and brackets, and '-' for negative terms, and '+' for compound terms [Engelbretsen/Sayward]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
In modern logic all formal validity can be characterised syntactically [Engelbretsen/Sayward]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic rests on truth and models, where constructivist logic rests on defence and refutation [Engelbretsen/Sayward]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Unlike most other signs, = cannot be eliminated [Engelbretsen/Sayward]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Axioms are ω-incomplete if the instances are all derivable, but the universal quantification isn't [Engelbretsen/Sayward]
7. Existence / D. Theories of Reality / 3. Reality
Without God we faced reality: what do we face without reality? [Baudrillard]
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
Nothing is true, but everything is exact [Baudrillard]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
16. Persons / F. Free Will / 5. Against Free Will
There is no need to involve the idea of free will to make choices about one's life [Baudrillard]
21. Aesthetics / C. Artistic Issues / 6. Value of Art
In modern times, being useless is the essential aesthetic ingredient for an object [Baudrillard]
22. Metaethics / C. The Good / 2. Happiness / c. Value of happiness
Good versus evil has been banefully reduced to happiness versus misfortune [Baudrillard]
24. Political Theory / C. Ruling a State / 2. Leaders / c. Despotism
Whole populations are terrorist threats to authorities, who unite against them [Baudrillard]
24. Political Theory / D. Ideologies / 5. Democracy / d. Representative democracy
People like democracy because it means they can avoid power [Baudrillard]
24. Political Theory / D. Ideologies / 6. Liberalism / b. Liberal individualism
Only in the last 200 years have people demanded the democratic privilege of being individuals [Baudrillard]
25. Social Practice / E. Policies / 5. Education / d. Study of history
The arrival of the news media brought history to an end [Baudrillard]
25. Social Practice / F. Life Issues / 4. Suicide
Suicide is ascribed to depression, with the originality of the act of will ignored [Baudrillard]
28. God / B. Proving God / 2. Proofs of Reason / d. Pascal's Wager
Pascal says secular life is acceptable, but more fun with the hypothesis of God [Baudrillard]