Combining Philosophers

All the ideas for Empedocles, Herbert B. Enderton and Richard Dedekind

expand these ideas     |    start again     |     specify just one area for these philosophers


88 ideas

2. Reason / D. Definition / 9. Recursive Definition
Dedekind proved definition by recursion, and thus proved the basic laws of arithmetic [Dedekind, by Potter]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
'fld R' indicates the 'field' of all objects in the relation [Enderton]
'ran R' indicates the 'range' of objects being related to [Enderton]
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
'F(x)' is the unique value which F assumes for a value of x [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
The 'powerset' of a set is all the subsets of a given set [Enderton]
Two sets are 'disjoint' iff their intersection is empty [Enderton]
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
A 'relation' is a set of ordered pairs [Enderton]
A 'function' is a relation in which each object is related to just one other object [Enderton]
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
The empty set may look pointless, but many sets can be constructed from it [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
An infinite set maps into its own proper subset [Dedekind, by Reck/Price]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We have the idea of self, and an idea of that idea, and so on, so infinite ideas are available [Dedekind, by Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Dedekind originally thought more in terms of mereology than of sets [Dedekind, by Potter]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are free creations of the human mind, to understand differences [Dedekind]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A cut between rational numbers creates and defines an irrational number [Dedekind]
Dedekind's axiom that his Cut must be filled has the advantages of theft over honest toil [Dedekind, by Russell]
Dedekind says each cut matches a real; logicists say the cuts are the reals [Dedekind, by Bostock]
I say the irrational is not the cut itself, but a new creation which corresponds to the cut [Dedekind]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting we see the human ability to relate, correspond and represent [Dedekind]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
A system S is said to be infinite when it is similar to a proper part of itself [Dedekind]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
If x changes by less and less, it must approach a limit [Dedekind]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Zero is a member, and all successors; numbers are the intersection of sets satisfying this [Dedekind, by Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Categoricity implies that Dedekind has characterised the numbers, because it has one domain [Rumfitt on Dedekind]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Induction is proved in Dedekind, an axiom in Peano; the latter seems simpler and clearer [Dedekind, by Russell]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Dedekindian abstraction talks of 'positions', where Cantorian abstraction talks of similar objects [Dedekind, by Fine,K]
7. Existence / A. Nature of Existence / 5. Reason for Existence
Nothing could come out of nothing, and existence could never completely cease [Empedocles]
7. Existence / B. Change in Existence / 1. Nature of Change
Empedocles says things are at rest, unless love unites them, or hatred splits them [Empedocles, by Aristotle]
9. Objects / A. Existence of Objects / 3. Objects in Thought
A thing is completely determined by all that can be thought concerning it [Dedekind]
9. Objects / A. Existence of Objects / 6. Nihilism about Objects
There is no coming-to-be of anything, but only mixing and separating [Empedocles, by Aristotle]
9. Objects / E. Objects over Time / 10. Beginning of an Object
Substance is not created or destroyed in mortals, but there is only mixing and exchange [Empedocles]
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
13. Knowledge Criteria / E. Relativism / 3. Subjectivism
One vision is produced by both eyes [Empedocles]
17. Mind and Body / A. Mind-Body Dualism / 3. Panpsychism
Wisdom and thought are shared by all things [Empedocles]
18. Thought / A. Modes of Thought / 1. Thought
For Empedocles thinking is almost identical to perception [Empedocles, by Theophrastus]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
Dedekind said numbers were abstracted from systems of objects, leaving only their position [Dedekind, by Dummett]
We derive the natural numbers, by neglecting everything of a system except distinctness and order [Dedekind]
18. Thought / E. Abstraction / 8. Abstractionism Critique
Dedekind has a conception of abstraction which is not psychologistic [Dedekind, by Tait]
22. Metaethics / B. Value / 2. Values / j. Evil
Empedocles said good and evil were the basic principles [Empedocles, by Aristotle]
26. Natural Theory / A. Speculations on Nature / 1. Nature
'Nature' is just a word invented by people [Empedocles]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
The principle of 'Friendship' in Empedocles is the One, and is bodiless [Empedocles, by Plotinus]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
Empedocles said that there are four material elements, and two further creative elements [Empedocles, by Aristotle]
Empedocles says bone is water, fire and earth in ratio 2:4:2 [Empedocles, by Inwood]
Fire, Water, Air and Earth are elements, being simple as well as homoeomerous [Empedocles, by Aristotle]
All change is unity through love or division through hate [Empedocles]
The elements combine in coming-to-be, but how do the elements themselves come-to-be? [Aristotle on Empedocles]
Love and Strife only explain movement if their effects are distinctive [Aristotle on Empedocles]
If the one Being ever diminishes it would no longer exist, and what could ever increase it? [Empedocles]
27. Natural Reality / G. Biology / 3. Evolution
Maybe bodies are designed by accident, and the creatures that don't work are destroyed [Empedocles, by Aristotle]
28. God / A. Divine Nature / 2. Divine Nature
God is a pure, solitary, and eternal sphere [Empedocles]
God is pure mind permeating the universe [Empedocles]
28. God / A. Divine Nature / 4. Divine Contradictions
In Empedocles' theory God is ignorant because, unlike humans, he doesn't know one of the elements (strife) [Aristotle on Empedocles]
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
It is wretched not to want to think clearly about the gods [Empedocles]