Combining Philosophers

All the ideas for Dougherty,T/Rysiew,P, Wilfrid Hodges and Ernst Zermelo

expand these ideas     |    start again     |     specify just one area for these philosophers


43 ideas

2. Reason / D. Definition / 7. Contextual Definition
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
Zermelo made 'set' and 'member' undefined axioms [Zermelo, by Chihara]
For Zermelo's set theory the empty set is zero and the successor of each number is its unit set [Zermelo, by Blackburn]
Zermelo showed that the ZF axioms in 1930 were non-categorical [Zermelo, by Hallett,M]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was added when some advanced theorems seemed to need it [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is the study of sound argument, or of certain artificial languages (or applying the latter to the former) [Hodges,W]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
A formula needs an 'interpretation' of its constants, and a 'valuation' of its variables [Hodges,W]
There are three different standard presentations of semantics [Hodges,W]
I |= φ means that the formula φ is true in the interpretation I [Hodges,W]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
Models in model theory are structures, not sets of descriptions [Hodges,W]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Down Löwenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
Up Löwenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
5. Theory of Logic / K. Features of Logics / 6. Compactness
If a first-order theory entails a sentence, there is a finite subset of the theory which entails it [Hodges,W]
5. Theory of Logic / L. Paradox / 3. Antinomies
The antinomy of endless advance and of completion is resolved in well-ordered transfinite numbers [Zermelo]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / e. Countable infinity
Zermelo realised that Choice would facilitate the sort of 'counting' Cantor needed [Zermelo, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
A 'set' is a mathematically well-behaved class [Hodges,W]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
11. Knowledge Aims / A. Knowledge / 2. Understanding
It is nonsense that understanding does not involve knowledge; to understand, you must know [Dougherty/Rysiew]
To grasp understanding, we should be more explicit about what needs to be known [Dougherty/Rysiew]
11. Knowledge Aims / A. Knowledge / 7. Knowledge First
Rather than knowledge, our epistemic aim may be mere true belief, or else understanding and wisdom [Dougherty/Rysiew]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
Don't confuse justified belief with justified believers [Dougherty/Rysiew]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / b. Need for justification
If knowledge is unanalysable, that makes justification more important [Dougherty/Rysiew]
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
We should judge principles by the science, not science by some fixed principles [Zermelo]
19. Language / C. Assigning Meanings / 2. Semantics
Entailment is modelled in formal semantics as set inclusion (where 'mammals' contains 'cats') [Dougherty/Rysiew]