Combining Philosophers

All the ideas for Dougherty,T/Rysiew,P, Richard Dedekind and B Russell/AN Whitehead

expand these ideas     |    start again     |     specify just one area for these philosophers


60 ideas

2. Reason / D. Definition / 9. Recursive Definition
Dedekind proved definition by recursion, and thus proved the basic laws of arithmetic [Dedekind, by Potter]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
An infinite set maps into its own proper subset [Dedekind, by Reck/Price]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We have the idea of self, and an idea of that idea, and so on, so infinite ideas are available [Dedekind, by Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Dedekind originally thought more in terms of mereology than of sets [Dedekind, by Potter]
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Lewis's 'strict implication' preserved Russell's confusion of 'if...then' with implication [Quine on Russell/Whitehead]
Russell's implication means that random sentences imply one another [Lewis,CI on Russell/Whitehead]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Russell unusually saw logic as 'interpreted' (though very general, and neutral) [Russell/Whitehead, by Linsky,B]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
In 'Principia' a new abstract theory of relations appeared, and was applied [Russell/Whitehead, by Gödel]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are free creations of the human mind, to understand differences [Dedekind]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A cut between rational numbers creates and defines an irrational number [Dedekind]
Dedekind's axiom that his Cut must be filled has the advantages of theft over honest toil [Dedekind, by Russell]
A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro]
Dedekind says each cut matches a real; logicists say the cuts are the reals [Dedekind, by Bostock]
I say the irrational is not the cut itself, but a new creation which corresponds to the cut [Dedekind]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting we see the human ability to relate, correspond and represent [Dedekind]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
A system S is said to be infinite when it is similar to a proper part of itself [Dedekind]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
If x changes by less and less, it must approach a limit [Dedekind]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Zero is a member, and all successors; numbers are the intersection of sets satisfying this [Dedekind, by Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Categoricity implies that Dedekind has characterised the numbers, because it has one domain [Rumfitt on Dedekind]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Induction is proved in Dedekind, an axiom in Peano; the latter seems simpler and clearer [Dedekind, by Russell]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / a. Defining numbers
Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Dedekindian abstraction talks of 'positions', where Cantorian abstraction talks of similar objects [Dedekind, by Fine,K]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes]
Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend]
'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman]
The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro]
9. Objects / A. Existence of Objects / 3. Objects in Thought
A thing is completely determined by all that can be thought concerning it [Dedekind]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
An object is identical with itself, and no different indiscernible object can share that [Russell/Whitehead, by Adams,RM]
11. Knowledge Aims / A. Knowledge / 2. Understanding
It is nonsense that understanding does not involve knowledge; to understand, you must know [Dougherty/Rysiew]
To grasp understanding, we should be more explicit about what needs to be known [Dougherty/Rysiew]
11. Knowledge Aims / A. Knowledge / 7. Knowledge First
Rather than knowledge, our epistemic aim may be mere true belief, or else understanding and wisdom [Dougherty/Rysiew]
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Russell showed, through the paradoxes, that our basic logical intuitions are self-contradictory [Russell/Whitehead, by Gödel]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
Don't confuse justified belief with justified believers [Dougherty/Rysiew]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / b. Need for justification
If knowledge is unanalysable, that makes justification more important [Dougherty/Rysiew]
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
The multiple relations theory says assertions about propositions are about their ingredients [Russell/Whitehead, by Linsky,B]
A judgement is a complex entity, of mind and various objects [Russell/Whitehead]
The meaning of 'Socrates is human' is completed by a judgement [Russell/Whitehead]
The multiple relation theory of judgement couldn't explain the unity of sentences [Morris,M on Russell/Whitehead]
Only the act of judging completes the meaning of a statement [Russell/Whitehead]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
Dedekind said numbers were abstracted from systems of objects, leaving only their position [Dedekind, by Dummett]
We derive the natural numbers, by neglecting everything of a system except distinctness and order [Dedekind]
18. Thought / E. Abstraction / 8. Abstractionism Critique
Dedekind has a conception of abstraction which is not psychologistic [Dedekind, by Tait]
19. Language / C. Assigning Meanings / 2. Semantics
Entailment is modelled in formal semantics as set inclusion (where 'mammals' contains 'cats') [Dougherty/Rysiew]
19. Language / D. Propositions / 3. Concrete Propositions
Propositions as objects of judgement don't exist, because we judge several objects, not one [Russell/Whitehead]