Combining Philosophers

All the ideas for Agrippa, Kenneth Kunen and Thomas Hofweber

expand these ideas     |    start again     |     specify just one area for these philosophers


65 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is (supposedly) first the ontology, then in general what things are like [Hofweber]
1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Esoteric metaphysics aims to be top science, investigating ultimate reality [Hofweber]
1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
Science has discovered properties of things, so there are properties - so who needs metaphysics? [Hofweber]
'Fundamentality' is either a superficial idea, or much too obscure [Hofweber]
2. Reason / A. Nature of Reason / 9. Limits of Reason
All discussion is full of uncertainty and contradiction (Mode 11) [Agrippa, by Diog. Laertius]
Proofs often presuppose the thing to be proved (Mode 15) [Agrippa, by Diog. Laertius]
All reasoning endlessly leads to further reasoning (Mode 12) [Agrippa, by Diog. Laertius]
Reasoning needs arbitrary faith in preliminary hypotheses (Mode 14) [Agrippa, by Diog. Laertius]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
'It's true that Fido is a dog' conjures up a contrast class, of 'it's false' or 'it's unlikely' [Hofweber]
3. Truth / H. Deflationary Truth / 3. Minimalist Truth
Instances of minimal truth miss out propositions inexpressible in current English [Hofweber]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Since properties can have properties, some theorists rank them in 'types' [Hofweber]
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
Maybe not even names are referential, but are just by used by speakers to refer [Hofweber]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An adjective contributes semantically to a noun phrase [Hofweber]
'Singular terms' are not found in modern linguistics, and are not the same as noun phrases [Hofweber]
If two processes are said to be identical, that doesn't make their terms refer to entities [Hofweber]
5. Theory of Logic / G. Quantification / 1. Quantification
The quantifier in logic is not like the ordinary English one (which has empty names, non-denoting terms etc) [Hofweber]
The inferential quantifier focuses on truth; the domain quantifier focuses on reality [Hofweber]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Quantifiers for domains and for inference come apart if there are no entities [Hofweber]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Quantification can't all be substitutional; some reference is obviously to objects [Hofweber]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
What is the relation of number words as singular-terms, adjectives/determiners, and symbols? [Hofweber]
'2 + 2 = 4' can be read as either singular or plural [Hofweber]
Numbers are used as singular terms, as adjectives, and as symbols [Hofweber]
The Amazonian Piraha language is said to have no number words [Hofweber]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The fundamental theorem of arithmetic is that all numbers are composed uniquely of primes [Hofweber]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
How can words be used for counting if they are objects? [Hofweber]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Why is arithmetic hard to learn, but then becomes easy? [Hofweber]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Arithmetic is not about a domain of entities, as the quantifiers are purely inferential [Hofweber]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Arithmetic doesn’t simply depend on objects, since it is true of fictional objects [Hofweber]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
We might eliminate adjectival numbers by analysing them into blocks of quantifiers [Hofweber]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicism makes sense of our ability to know arithmetic just by thought [Hofweber]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-Fregeans are dazzled by a technical result, and ignore practicalities [Hofweber]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
First-order logic captures the inferential relations of numbers, but not the semantics [Hofweber]
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
Supervenience offers little explanation for things which necessarily go together [Hofweber]
7. Existence / D. Theories of Reality / 3. Reality
Reality can be seen as the totality of facts, or as the totality of things [Hofweber]
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
There are probably ineffable facts, systematically hidden from us [Hofweber]
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
8. Modes of Existence / B. Properties / 1. Nature of Properties
Since properties have properties, there can be a typed or a type-free theory of them [Hofweber]
9. Objects / A. Existence of Objects / 6. Nihilism about Objects
Our perceptual beliefs are about ordinary objects, not about simples arranged chair-wise [Hofweber]
10. Modality / B. Possibility / 9. Counterfactuals
Counterfactuals are essential for planning, and learning from mistakes [Hofweber]
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / a. Agrippa's trilemma
Agrippa's Trilemma: justification is infinite, or ends arbitrarily, or is circular [Agrippa, by Williams,M]
13. Knowledge Criteria / E. Relativism / 1. Relativism
Everything is perceived in relation to another thing (Mode 13) [Agrippa, by Diog. Laertius]
15. Nature of Minds / C. Capacities of Minds / 4. Objectification
Our minds are at their best when reasoning about objects [Hofweber]
19. Language / A. Nature of Meaning / 1. Meaning
The "Fido"-Fido theory of meaning says every expression in a language has a referent [Hofweber]
19. Language / A. Nature of Meaning / 7. Meaning Holism / c. Meaning by Role
Inferential role semantics is an alternative to semantics that connects to the world [Hofweber]
19. Language / C. Assigning Meanings / 1. Syntax
Syntactic form concerns the focus of the sentence, as well as the truth-conditions [Hofweber]
19. Language / C. Assigning Meanings / 3. Predicates
Properties can be expressed in a language despite the absence of a single word for them [Hofweber]
'Being taller than this' is a predicate which can express many different properties [Hofweber]
19. Language / C. Assigning Meanings / 4. Compositionality
Compositonality is a way to build up the truth-conditions of a sentence [Hofweber]
19. Language / D. Propositions / 1. Propositions
Proposition have no content, because they are content [Hofweber]
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
Without propositions there can be no beliefs or desires [Hofweber]
19. Language / D. Propositions / 3. Concrete Propositions
Do there exist thoughts which we are incapable of thinking? [Hofweber]
19. Language / F. Communication / 5. Pragmatics / a. Contextual meaning
'Semantic type coercion' is selecting the reading of a word to make the best sense [Hofweber]
19. Language / F. Communication / 5. Pragmatics / b. Implicature
'Background deletion' is appropriately omitting background from an answer [Hofweber]
19. Language / F. Communication / 6. Interpreting Language / a. Translation
Holism says language can't be translated; the expressibility hypothesis says everything can [Hofweber]