Combining Philosophers

All the ideas for Rescher,N/Oppenheim,P, Brian Clegg and A.C. Ewing

unexpand these ideas     |    start again     |     specify just one area for these philosophers


24 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
     Full Idea: For a set to be 'well-ordered' it is required that every subset of the set has a first element.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
     Full Idea: Set theory made a closer study of infinity possible.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
Any set can always generate a larger set - its powerset, of subsets [Clegg]
     Full Idea: The idea of the 'power set' means that it is always possible to generate a bigger one using only the elements of that set, namely the set of all its subsets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
     Full Idea: Axiom of Extension: Two sets are equal if and only if they have the same elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
     Full Idea: Axiom of Pairing: For any two sets there exists a set to which they both belong. So you can make a set out of two other sets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
     Full Idea: Axiom of Unions: For every collection of sets there exists a set that contains all the elements that belong to at least one of the sets in the collection.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
     Full Idea: Axiom of Infinity: There exists a set containing the empty set and the successor of each of its elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This is rather different from the other axioms because it contains the notion of 'successor', though that can be generated by an ordering procedure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
     Full Idea: Axiom of Powers: For each set there exists a collection of sets that contains amongst its elements all the subsets of the given set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: Obviously this must include the whole of the base set (i.e. not just 'proper' subsets), otherwise the new set would just be a duplicate of the base set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
     Full Idea: Axiom of Choice: For every set we can provide a mechanism for choosing one member of any non-empty subset of the set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This axiom is unusual because it makes the bold claim that such a 'mechanism' can always be found. Cohen showed that this axiom is separate. The tricky bit is choosing from an infinite subset.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
     Full Idea: Axiom of Existence: there exists at least one set. This may be the empty set, but you need to start with something.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
     Full Idea: Axiom of Specification: For every set and every condition, there corresponds a set whose elements are exactly the same as those elements of the original set for which the condition is true. So the concept 'number is even' produces a set from the integers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: What if the condition won't apply to the set? 'Number is even' presumably won't produce a set if it is applied to a set of non-numbers.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
     Full Idea: Three views of mathematics: 'pure' mathematics, where it doesn't matter if it could ever have any application; 'real' mathematics, where every concept must be physically grounded; and 'applied' mathematics, using the non-real if the results are real.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.17)
     A reaction: Very helpful. No one can deny the activities of 'pure' mathematics, but I think it is undeniable that the origins of the subject are 'real' (rather than platonic). We do economics by pretending there are concepts like the 'average family'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
     Full Idea: With ordinary finite numbers ordinals and cardinals are in effect the same, but beyond infinity it is possible for two sets to have the same cardinality but different ordinals.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An ordinal number is defined by the set that comes before it [Clegg]
     Full Idea: You can think of an ordinal number as being defined by the set that comes before it, so, in the non-negative integers, ordinal 5 is defined as {0, 1, 2, 3, 4}.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
     Full Idea: The 'transcendental numbers' are those irrationals that can't be fitted to a suitable finite equation, of which π is far and away the best known.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
     Full Idea: The realisation that brought 'i' into the toolkit of physicists and engineers was that you could extend the 'number line' into a new dimension, with an imaginary number axis at right angles to it. ...We now have a 'number plane'.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.12)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
     Full Idea: It is a chicken-and-egg problem, whether the lack of zero forced forced classical mathematicians to rely mostly on a geometric approach to mathematics, or the geometric approach made 0 a meaningless concept, but the two remain strongly tied together.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
     Full Idea: As far as Kronecker was concerned, Cantor had built a whole structure on the irrational numbers, and so that structure had no foundation at all.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
     Full Idea: Paul Cohen showed that the Continuum Hypothesis is independent of the axioms of set theory.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
     Full Idea: The 'continuum hypothesis' says that aleph-one is the cardinality of the rational and irrational numbers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
A whole must have one characteristic, an internal relation, and a structure [Rescher/Oppenheim]
     Full Idea: A whole must possess an attribute peculiar to and characteristic of it as a whole; there must be a characteristic relation of dependence between the parts; and the whole must have some structure which gives it characteristics.
     From: Rescher,N/Oppenheim,P (Logical Analysis of Gestalt Concepts [1955], p.90), quoted by Peter Simons - Parts 9.2
     A reaction: Simons says these are basically sensible conditions, and tries to fill them out. They seem a pretty good start, and I must resist the temptation to rush to borderline cases.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / b. Pro-coherentism
We can no more expect a precise definition of coherence than we can of the moral ideal [Ewing]
     Full Idea: I think it is wrong to tie down the advocates of the coherence theory to a precise definition. ...It would be altogether unreasonable to demand that the moral ideal should be exhaustively defined, and the same may be true of the ideal of thought.
     From: A.C. Ewing (Idealism: a critical survey [1934], p.231), quoted by Erik J. Olsson - Against Coherence 7.6
     A reaction: I strongly agree. It is not a council of despair. I think the criteria of coherence can be articulated quite well (e.g by Thagard), and the virtues of enquiry can also be quite well specified (e.g. by Zagzebski). Very dissimilar evidence must cohere.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / c. Coherentism critique
If undetailed, 'coherence' is just a vague words that covers all possible arguments [Ewing]
     Full Idea: Without a detailed account, coherence is reduced to the mere muttering of the word 'coherence', which can be interpreted so as to cover all arguments, but only by making its meaning so wide as to rob it of almost all significance.
     From: A.C. Ewing (Idealism: a critical survey [1934], p.246), quoted by Erik J. Olsson - Against Coherence 2.2
     A reaction: I'm a fan of coherence, but it is a placeholder, involving no intrinsic or detailed theory. I just think it points to the reality of how we make judgements, especially practical ones. We can categorise the inputs, and explain the required virtues.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / c. Particularism
The ground for an attitude is not a thing's 'goodness', but its concrete characteristics [Ewing]
     Full Idea: The ground for an attitude lies not in some other ethical concept, goodness, but in the concrete, factual characteristics of what we pronounce good. ...We shall not be better off if we interpolate an indefinable characteristic of goodness besides.
     From: A.C. Ewing (The Definition of Good [1948], p.172), quoted by Francesco Orsi - Value Theory 1.4
     A reaction: This is a forerunner of Scanlon's Buck-Passing theory of the source of value (in other properties). I approve of this approach. If I say 'actually this very strong cheese is really good', I'm not adding goodness to the cheese.