Combining Philosophers

All the ideas for Hermarchus, Arnauld / Nicole and Feferman / Feferman

unexpand these ideas     |    start again     |     specify just one area for these philosophers


19 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is consistent with the other axioms of set theory [Feferman/Feferman]
     Full Idea: In 1938 Gödel proved that the Axiom of Choice is consistent with the other axioms of set theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: Hence people now standardly accept ZFC, rather than just ZF.
Axiom of Choice: a set exists which chooses just one element each of any set of sets [Feferman/Feferman]
     Full Idea: Zermelo's Axiom of Choice asserts that for any set of non-empty sets that (pairwise) have no elements in common, then there is a set that 'simultaneously chooses' exactly one element from each set. Note that this is an existential claim.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The Axiom is now widely accepted, after much debate in the early years. Even critics of the Axiom turn out to be relying on it.
Platonist will accept the Axiom of Choice, but others want criteria of selection or definition [Feferman/Feferman]
     Full Idea: The Axiom of Choice seems clearly true from the Platonistic point of view, independently of how sets may be defined, but is rejected by those who think such existential claims must show how to pick out or define the object claimed to exist.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The typical critics are likely to be intuitionists or formalists, who seek for both rigour and a plausible epistemology in our theory.
The Trichotomy Principle is equivalent to the Axiom of Choice [Feferman/Feferman]
     Full Idea: The Trichotomy Principle (any number is less, equal to, or greater than, another number) turned out to be equivalent to the Axiom of Choice.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: [He credits Sierpinski (1918) with this discovery]
Cantor's theories needed the Axiom of Choice, but it has led to great controversy [Feferman/Feferman]
     Full Idea: The Axiom of Choice is a pure existence statement, without defining conditions. It was necessary to provide a foundation for Cantor's theory of transfinite cardinals and ordinal numbers, but its nonconstructive character engendered heated controversy.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure is a 'model' when the axioms are true. So which of the structures are models? [Feferman/Feferman]
     Full Idea: A structure is said to be a 'model' of an axiom system if each of its axioms is true in the structure (e.g. Euclidean or non-Euclidean geometry). 'Model theory' concerns which structures are models of a given language and axiom system.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This strikes me as the most interesting aspect of mathematical logic, since it concerns the ways in which syntactic proof-systems actually connect with reality. Tarski is the central theoretician here, and his theory of truth is the key.
Tarski and Vaught established the equivalence relations between first-order structures [Feferman/Feferman]
     Full Idea: In the late 1950s Tarski and Vaught defined and established basic properties of the relation of elementary equivalence between two structures, which holds when they make true exactly the same first-order sentences. This is fundamental to model theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This is isomorphism, which clarifies what a model is by giving identity conditions between two models. Note that it is 'first-order', and presumably founded on classical logic.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim-Skolem says if the sentences are countable, so is the model [Feferman/Feferman]
     Full Idea: The Löwenheim-Skolem Theorem, the earliest in model theory, states that if a countable set of sentences in a first-order language has a model, then it has a countable model.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: There are 'upward' (sentences-to-model) and 'downward' (model-to-sentences) versions of the theory.
Löwenheim-Skolem Theorem, and Gödel's completeness of first-order logic, the earliest model theory [Feferman/Feferman]
     Full Idea: Before Tarski's work in the 1930s, the main results in model theory were the Löwenheim-Skolem Theorem, and Gödel's establishment in 1929 of the completeness of the axioms and rules for the classical first-order predicate (or quantificational) calculus.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a sentence holds in every model of a theory, then it is logically derivable from the theory [Feferman/Feferman]
     Full Idea: Completeness is when, if a sentences holds in every model of a theory, then it is logically derivable from that theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Recursion theory' concerns what can be solved by computing machines [Feferman/Feferman]
     Full Idea: 'Recursion theory' is the subject of what can and cannot be solved by computing machines
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Ch.9)
     A reaction: This because 'recursion' will grind out a result step-by-step, as long as the steps will 'halt' eventually.
Both Principia Mathematica and Peano Arithmetic are undecidable [Feferman/Feferman]
     Full Idea: In 1936 Church showed that Principia Mathematica is undecidable if it is ω-consistent, and a year later Rosser showed that Peano Arithmetic is undecidable, and any consistent extension of it.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int IV)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
We can rise by degrees through abstraction, with higher levels representing more things [Arnauld,A/Nicole,P]
     Full Idea: I can start with a triangle, and rise by degrees to all straight-lined figures and to extension itself. The lower degree will include the higher degree. Since the higher degree is less determinate, it can represent more things.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: [compressed] This attempts to explain the generalising ability of abstraction cited in Idea 10501. If you take a complex object and eliminate features one by one, it can only 'represent' more particulars; it could hardly represent fewer.
12. Knowledge Sources / B. Perception / 3. Representation
We can only know the exterior world via our ideas [Arnauld,A/Nicole,P]
     Full Idea: We can have knowledge of what is outside us only through the mediation of ideas in us.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], p.63), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 1 'Conc'
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Forms make things distinct and explain the properties, by pure form, or arrangement of parts [Arnauld,A/Nicole,P]
     Full Idea: The form is what renders a thing such and distinguishes it from others, whether it is a being really distinct from the matter, according to the Schools, or whether it is only the arrangement of the parts. By this form one must explain its properties.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], III.18 p240), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 27.6
     A reaction: If we ask 'what explains the properties of this thing' it is hard to avoid coming up with something that might be called the 'form'. Note that they allow either substantial or corpuscularian forms. It is hard to disagree with the idea.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We know by abstraction because we only understand composite things a part at a time [Arnauld,A/Nicole,P]
     Full Idea: The mind cannot perfectly understand things that are even slightly composite unless it considers them a part at a time. ...This is generally called knowing by abstraction. (..the human body, for example).
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: This adds the interesting thought that the mind is forced to abstract, rather than abstraction being a luxury extra feature. Knowledge through analysis is knowledge by abstraction. Also a nice linking of abstraction to epistemology.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
A triangle diagram is about all triangles, if some features are ignored [Arnauld,A/Nicole,P]
     Full Idea: If I draw an equilateral triangle on a piece of paper, ..I shall have an idea of only a single triangle. But if I ignore all the particular circumstances and focus on the three equal lines, I will be able to represent all equilateral triangles.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: [compressed] They observed that we grasp composites through their parts, and now that we can grasp generalisations through particulars, both achieved by the psychological act of abstraction, thus showing its epistemological power.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
No one denies that a line has width, but we can just attend to its length [Arnauld,A/Nicole,P]
     Full Idea: Geometers by no means assume that there are lines without width or surfaces without depth. They only think it is possible to consider the length without paying attention to the width. We can measure the length of a path without its width.
     From: Arnauld / Nicole (Logic (Port-Royal Art of Thinking) [1662], I.5)
     A reaction: A nice example which makes the point indubitable. The modern 'rigorous' account of abstraction that starts with Frege seems to require more than one object, in order to derive abstractions like direction or number. Path widths are not comparatives.
25. Social Practice / F. Life Issues / 6. Animal Rights
Animals are dangerous and nourishing, and can't form contracts of justice [Hermarchus, by Sedley]
     Full Idea: Hermarchus said that animal killing is justified by considerations of human safety and nourishment and by animals' inability to form contractual relations of justice with us.
     From: report of Hermarchus (fragments/reports [c.270 BCE]) by David A. Sedley - Hermarchus
     A reaction: Could the last argument be used to justify torturing animals? Or could we eat a human who was too brain-damaged to form contracts?