Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Robert Kirk and A.George / D.J.Velleman

unexpand these ideas     |    start again     |     specify just one area for these philosophers


57 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
     Full Idea: A contextual definition shows how to analyse an expression in situ, by replacing a complete sentence (of a particular form) in which the expression occurs by another in which it does not.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: This is a controversial procedure, which (according to Dummett) Frege originally accepted, and later rejected. It might not be the perfect definition that replacing just the expression would give you, but it is a promising step.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
     Full Idea: When a definition contains a quantifier whose range includes the very entity being defined, the definition is said to be 'impredicative'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Presumably they are 'impredicative' because they do not predicate a new quality in the definiens, but make use of the qualities already known.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
     Full Idea: The 'power set' of A is all the subsets of A. P(A) = {B : B ⊆ A}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
     Full Idea: The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}}. The existence of this set is guaranteed by three applications of the Axiom of Pairing.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10100 for the Axiom of Pairing.
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
     Full Idea: The 'Cartesian Product' of any two sets A and B is the set of all ordered pairs <a, b> in which a ∈ A and b ∈ B, and it is denoted as A x B.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
     Full Idea: The idea of grouping together objects that share some property is a common one in mathematics, ...and the technique most often involves the use of equivalence relations.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
     Full Idea: A relation is an equivalence relation if it is reflexive, symmetric and transitive. The 'same first letter' is an equivalence relation on the set of English words. Any relation that puts a partition into clusters will be equivalence - and vice versa.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is a key concept in the Fregean strategy for defining numbers.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
     Full Idea: ZFC is a theory concerned only with sets. Even the elements of all of the sets studied in ZFC are also sets (whose elements are also sets, and so on). This rests on one clearly pure set, the empty set Φ. ..Mathematics only needs pure sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This makes ZFC a much more metaphysically comfortable way to think about sets, because it can be viewed entirely formally. It is rather hard to disentangle a chair from the singleton set of that chair.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
     Full Idea: The Axiom of Extensionality says that for all sets x and y, if x and y have the same elements then x = y.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems fine in pure set theory, but hits the problem of renates and cordates in the real world. The elements coincide, but the axiom can't tell you why they coincide.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
     Full Idea: The Axiom of Pairing says that for all sets x and y, there is a set z containing x and y, and nothing else. In symbols: ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10099 for an application of this axiom.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
     Full Idea: The Axiom of Reducibility ...had the effect of making impredicative definitions possible.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
     Full Idea: Sets, unlike extensions, fail to correspond to all concepts. We can prove in ZFC that there is no set corresponding to the concept 'set' - that is, there is no set of all sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: This is rather an important point for Frege. However, all concepts have extensions, but they may be proper classes, rather than precisely defined sets.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
     Full Idea: The problem with reducing arithmetic to ZFC is not that this theory is inconsistent (as far as we know it is not), but rather that is not completely general, and for this reason not logical. For example, it asserts the existence of sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Note that ZFC has not been proved consistent.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
     Full Idea: A hallmark of our realist stance towards the natural world is that we are prepared to assert the Law of Excluded Middle for all statements about it. For all statements S, either S is true, or not-S is true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Personally I firmly subscribe to realism, so I suppose I must subscribe to Excluded Middle. ...Provided the statement is properly formulated. Or does liking excluded middle lead me to realism?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
     Full Idea: A 'model' of a theory is an assignment of meanings to the symbols of its language which makes all of its axioms come out true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: If the axioms are all true, and the theory is sound, then all of the theorems will also come out true.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
     Full Idea: Mathematicians tend to regard the differences between isomorphic mathematical structures as unimportant.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems to be a pointer towards Structuralism as the underlying story in mathematics. The intrinsic character of so-called 'objects' seems unimportant. How theories map onto one another (and onto the world?) is all that matters?
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
     Full Idea: Consistency is a purely syntactic property, unlike the semantic property of soundness.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
     Full Idea: If there is a sentence such that both the sentence and its negation are theorems of a theory, then the theory is 'inconsistent'. Otherwise it is 'consistent'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
     Full Idea: Soundness is a semantic property, unlike the purely syntactic property of consistency.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
     Full Idea: If there is a sentence such that neither the sentence nor its negation are theorems of a theory, then the theory is 'incomplete'. Otherwise it is 'complete'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: Interesting questions are raised about undecidable sentences, irrelevant sentences, unknown sentences....
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
     Full Idea: We can think of rational numbers as providing answers to division problems involving integers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Cf. Idea 10102.
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
     Full Idea: In defining the integers in set theory, our definition will be motivated by thinking of the integers as answers to subtraction problems involving natural numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Typical of how all of the families of numbers came into existence; they are 'invented' so that we can have answers to problems, even if we can't interpret the answers. It it is money, we may say the minus-number is a 'debt', but is it? Cf Idea 10106.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
     Full Idea: One reason for introducing the real numbers is to provide answers to square root problems.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Presumably the other main reasons is to deal with problems of exact measurement. It is interesting that there seem to be two quite distinct reasons for introducing the reals. Cf. Ideas 10102 and 10106.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
     Full Idea: The logicist idea is that if mathematics is logic, and logic is the most general of disciplines, one that applies to all rational thought regardless of its content, then it is not surprising that mathematics is widely applicable.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Frege was keen to emphasise this. You are left wondering why pure logic is applicable to the physical world. The only account I can give is big-time Platonism, or Pythagoreanism. Logic reveals the engine-room of nature, where the design is done.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
     Full Idea: Unlike the intuitionist, the classical mathematician believes in an actual set that contains all the real numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
     Full Idea: The first-order version of the induction axiom is weaker than the second-order, because the latter applies to all concepts, but the first-order applies only to concepts definable by a formula in the first-order language of number theory.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7 n7)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
     Full Idea: The idea behind the proofs of the Incompleteness Theorems is to use the language of Peano Arithmetic to talk about the formal system of Peano Arithmetic itself.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: The mechanism used is to assign a Gödel Number to every possible formula, so that all reasonings become instances of arithmetic.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
     Full Idea: For any set x, we define the 'successor' of x to be the set S(x) = x U {x}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is the Fregean approach to successor, where the Dedekind approach takes 'successor' to be a primitive. Frege 1884:§76.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
     Full Idea: The derivability of Peano's Postulates from Hume's Principle in second-order logic has been dubbed 'Frege's Theorem', (though Frege would not have been interested, because he didn't think Hume's Principle gave an adequate definition of numebrs).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8 n1)
     A reaction: Frege said the numbers were the sets which were the extensions of the sets created by Hume's Principle.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
     Full Idea: The Peano Postulates can be proven in ZFC.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
     Full Idea: One might well wonder whether talk of abstract entities is less a solution to the empiricist's problem of how a priori knowledge is possible than it is a label for the problem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Intro)
     A reaction: This pinpoints my view nicely. What the platonist postulates is remote, bewildering, implausible and useless!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
     Full Idea: As, in the logicist view, mathematics is about nothing particular, it is little wonder that nothing in particular needs to be observed in order to acquire mathematical knowledge.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002])
     A reaction: At the very least we can say that no one would have even dreamt of the general system of arithmetic is they hadn't had experience of the particulars. Frege thought generality ensured applicability, but extreme generality might entail irrelevance.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
     Full Idea: In the unramified theory of types, all objects are classified into a hierarchy of types. The lowest level has individual objects that are not sets. Next come sets whose elements are individuals, then sets of sets, etc. Variables are confined to types.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: The objects are Type 0, the basic sets Type 1, etc.
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
     Full Idea: The theory of types seems to rule out harmless sets as well as paradoxical ones. If a is an individual and b is a set of individuals, then in type theory we cannot talk about the set {a,b}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Since we cheerfully talk about 'Cicero and other Romans', this sounds like a rather disasterous weakness.
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
     Full Idea: A problem with type theory is that there are only finitely many individuals, and finitely many sets of individuals, and so on. The hierarchy may be infinite, but each level is finite. Mathematics required an axiom asserting infinitely many individuals.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Most accounts of mathematics founder when it comes to infinities. Perhaps we should just reject them?
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
     Full Idea: If a is an individual and b is a set of individuals, then in the theory of types we cannot talk about the set {a,b}, since it is not an individual or a set of individuals, ...but it is hard to see what harm can come from it.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
     Full Idea: In the first instance all bounded quantifications are finitary, for they can be viewed as abbreviations for conjunctions and disjunctions.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
     A reaction: This strikes me as quite good support for finitism. The origin of a concept gives a good guide to what it really means (not a popular view, I admit). When Aristotle started quantifying, I suspect of he thought of lists, not totalities.
Much infinite mathematics can still be justified finitely [George/Velleman]
     Full Idea: It is possible to use finitary reasoning to justify a significant part of infinitary mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: This might save Hilbert's project, by gradually accepting into the fold all the parts which have been giving a finitist justification.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
     Full Idea: The intuitionists are the idealists of mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
     Full Idea: For intuitionists, truth is not independent of proof, but this independence is precisely what seems to be suggested by Gödel's First Incompleteness Theorem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: Thus Gödel was worse news for the Intuitionists than he was for Hilbert's Programme. Gödel himself responded by becoming a platonist about his unprovable truths.
7. Existence / C. Structure of Existence / 2. Reduction
A weaker kind of reductionism than direct translation is the use of 'bridge laws' [Kirk,R]
     Full Idea: If multiple realisability means that psychological terms cannot be translated into physics, one weaker kind of reductionism resorts to 'bridge laws' which link the theory to be reduced to the reducing theory.
     From: Robert Kirk (Mind and Body [2003], §3.8)
     A reaction: It seems to me that reduction is all-or-nothing, so there can't be a 'weaker' kind. If they are totally separate but linked by naturally necessary laws (e.g. low temperature and ice), they are supervenient, but not reducible to one another.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
15. Nature of Minds / B. Features of Minds / 1. Consciousness / c. Parts of consciousness
Maybe we should see intentionality and consciousness as a single problem, not two [Kirk,R]
     Full Idea: Many philosophers today have adopted the view that we can achieve an enormous simplification by reducing the two components of the mind-body problem - intentionality and consciousness - into one; ...consciousness is no more than representations.
     From: Robert Kirk (Mind and Body [2003], §8.4)
     A reaction: One would then see subjective experience and informational content as two consequences of a single mental activity. This strikes me as the correct route to go. We do, after all, learn BY experiencing. Hence concepts are tied in with qualia.
15. Nature of Minds / B. Features of Minds / 4. Intentionality / a. Nature of intentionality
If a bird captures a worm, we could say its behaviour is 'about' the worm [Kirk,R]
     Full Idea: When a bird pulls a worm from the ground, then swallows it piece by piece, there is a sense in which its behaviour can be said to be about the worm.
     From: Robert Kirk (Mind and Body [2003], §5.4)
     A reaction: This is preparing the ground for a possible behaviourist account of intentionality. Reply: you could say rain is about puddles, or you could say we have adopted Dennett's 'intentional stance' to birds, but it tells us nothing about their psychology.
15. Nature of Minds / B. Features of Minds / 4. Intentionality / b. Intentionality theories
Behaviourism says intentionality is an external relation; language of thought says it's internal [Kirk,R]
     Full Idea: The conflict over whether intentionality is a matter of behavioural relations with the rest of the world, or of the internal states of the subject, is at its most dramatic in the contrast between behaviourism and the language of thought hypothesis.
     From: Robert Kirk (Mind and Body [2003], §7.10)
     A reaction: I just don't believe any behaviourist external account of intentionality, which ducks the question of how it all works. Personally I am more drawn to maps and models than to a language of thought. I plan my actions in an imagined space-time world.
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
Dualism implies some brain events with no physical cause, and others with no physical effect [Kirk,R]
     Full Idea: If the mind causes brain events, then they are not caused by other brain events, and such causal gaps should be detectable by scientists; there should also be a gap of brain-events which cause no other brain events, because they are causing mind events.
     From: Robert Kirk (Mind and Body [2003], §2.5)
     A reaction: This is the double causation problem which Spinoza had spotted (Idea 4862). Expressed this way, it seems a screamingly large problem for dualism. We should be able to discover some VERY strange physical activity in the brain.
17. Mind and Body / B. Behaviourism / 1. Behaviourism
Behaviourism seems a good theory for intentional states, but bad for phenomenal ones [Kirk,R]
     Full Idea: For many kinds of mental states, notably intentional ones such as beliefs and desires, behaviourism is appealing, ..but for sensations and experiences such as pain, it seems grossly implausible.
     From: Robert Kirk (Mind and Body [2003], §5.1)
     A reaction: The theory does indeed make a bit more sense for intentional states, but it still strikes me as nonsense that there is no more to my belief that 'Whales live in the Atlantic' than a disposition to say something. WHY do I say this something?
Behaviourism offers a good alternative to simplistic unitary accounts of mental relationships [Kirk,R]
     Full Idea: There is a temptation to think that 'aboutness', and the 'contents' of thoughts, and the relation of 'reference', are single and unitary relationships, but behaviourism offers an alternative approach.
     From: Robert Kirk (Mind and Body [2003], §5.5)
     A reaction: Personally I wouldn't touch behaviourism with a barge-pole (as it ducks the question of WHY certain behaviour occurs), but a warning against simplistic accounts of intentional states is good. I am sure there cannot be a single neat theory of refererence.
17. Mind and Body / B. Behaviourism / 2. Potential Behaviour
In 'holistic' behaviourism we say a mental state is a complex of many dispositions [Kirk,R]
     Full Idea: There is a non-reductive version of behaviourism ( which we can call 'global' or 'holistic') which says there is no more to having mental states than having a complex of certain kinds of behavioural dispositions.
     From: Robert Kirk (Mind and Body [2003], §5.2)
     A reaction: This is designed to meet a standard objection to behaviourism - that there is no straight correlation between what I think and how I behave. The present theory is obviously untestable, because a full 'complex' of human dispositions is never repeated.
17. Mind and Body / B. Behaviourism / 4. Behaviourism Critique
The inverted spectrum idea is often regarded as an objection to behaviourism [Kirk,R]
     Full Idea: The inverted spectrum idea is often regarded as an objection to behaviourism.
     From: Robert Kirk (Mind and Body [2003], §4.5)
     A reaction: Thus, my behaviour at traffic lights should be identical, even if I have a lifelong inversion of red and green. A good objection. Note that physicalists can believe in inverted qualia as well a dualists, as long as the brain states are also inverted.
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
All meaningful psychological statements can be translated into physics [Kirk,R]
     Full Idea: All psychological statements which are meaningful, that is to say, which are in principle verifiable, are translatable into propositions which do not involve psychological concepts, but only the concepts of physics.
     From: Robert Kirk (Mind and Body [2003], §3.8)
     A reaction: This shows how eliminativist behaviourism arises out of logical positivism (by only allowing what is verifiable). The simplest objection: we can't verify the mental states of others, because they are private, but they are still the best explanation.
17. Mind and Body / E. Mind as Physical / 4. Connectionism
Instead of representation by sentences, it can be by a distribution of connectionist strengths [Kirk,R]
     Full Idea: In a connectionist system, information is represented not by sentences but by the total distribution of connection strengths.
     From: Robert Kirk (Mind and Body [2003], §7.6)
     A reaction: Neither sentences (of a language of thought) NOR connection strengths strike me as very plausible ways for a brain to represent things. It must be something to do with connections, but it must also be to do with neurons, or we get bizarre counterexamples.
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / b. Multiple realisability
If mental states are multiply realisable, they could not be translated into physical terms [Kirk,R]
     Full Idea: If psychological states are multiply realisable it is hard to see how they could possibly be translated into physical terms.
     From: Robert Kirk (Mind and Body [2003], §3.8)
     A reaction: Reductive funtionalism would do it. A writing iimplement is physical and multiply realisable. Personally I prefer the strategy of saying mental states are NOT multiply realisable. If frog brains differ from ours, they probably don't feel pain like us.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
     Full Idea: Corresponding to every concept there is a class (some classes will be sets, the others proper classes).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
18. Thought / D. Concepts / 2. Origin of Concepts / c. Nativist concepts
It seems unlikely that most concepts are innate, if a theory must be understood to grasp them [Kirk,R]
     Full Idea: It is widely accepted that for many concepts, if not all, grasping the concept requires grasping some theory, ...which makes difficulties for the view that concepts are not learned: for 'radical concept nativism', as Fodor calls it.
     From: Robert Kirk (Mind and Body [2003], §7.3)
     A reaction: Not a problem for traditional rationalist theories, where the whole theory can be innate along with the concept, but a big objection to modern more cautious non-holistic views (such as Fodor's). Does a bird have a concept AND theory of a nest?
19. Language / A. Nature of Meaning / 5. Meaning as Verification
For behaviourists language is just a special kind of behaviour [Kirk,R]
     Full Idea: Behaviourists regard the use of language as just a special kind of behaviour.
     From: Robert Kirk (Mind and Body [2003], §7.9)
     A reaction: This is not an intuitively obvious view of language. We behave, and then we talk about behaviour. Performative utterances (like promising) have an obvious behavioural aspect, as do violent threats, but not highly theoretical language (such as maths).
19. Language / B. Reference / 1. Reference theories
Behaviourists doubt whether reference is a single type of relation [Kirk,R]
     Full Idea: To most behaviourists it seems misguided to expect there to be a single relation that connects referring expressions with their referents.
     From: Robert Kirk (Mind and Body [2003], §5.5)
     A reaction: You don't need to be a behaviourist to feel this doubt. Think about names of real people, names of fictional people, reference to misunderstood items, or imagined items, or reference in dreams, or to mathematical objects, or negations etc.