Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Palle Yourgrau and Benjamin Schnieder

unexpand these ideas     |    start again     |     specify just one area for these philosophers


7 ideas

6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
How many? must first partition an aggregate into sets, and then logic fixes its number [Yourgrau]
     Full Idea: We want to know How many what? You must first partition an aggregate into parts relevant to the question, where no partition is privileged. How the partitioned set is to be numbered is bound up with its unique members, and follows from logic alone.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'New Problem')
     A reaction: [Compressed wording of Yourgrau's summary of Frege's 'relativity argument'] Concepts do the partitioning. Yourgau says this fails, because the same argument applies to the sets themselves, as well as to the original aggregates.
Nothing is 'intrinsically' numbered [Yourgrau]
     Full Idea: Nothing at all is 'intrinsically' numbered.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'What the')
     A reaction: Once you are faced with distinct 'objects' of some sort, they can play the role of 'unit' in counting, so his challenge is that nothing is 'intrinsically' an object, which is the nihilism explored by Unger, Van Inwagen and Merricks. Aristotle disagrees...
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Defining 'three' as the principle of collection or property of threes explains set theory definitions [Yourgrau]
     Full Idea: The Frege-Maddy definition of number (as the 'property' of being-three) explains why the definitions of Von Neumann, Zermelo and others work, by giving the 'principle of collection' that ties together all threes.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'A Fregean')
     A reaction: [compressed two or three sentences] I am strongly in favour of the best definition being the one which explains the target, rather than just pinning it down. I take this to be Aristotle's view.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
We can't use sets as foundations for mathematics if we must await results from the upper reaches [Yourgrau]
     Full Idea: Sets could hardly serve as a foundation for number theory if we had to await detailed results in the upper reaches of the edifice before we could make our first move.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'Two')
You can ask all sorts of numerical questions about any one given set [Yourgrau]
     Full Idea: We can address a set with any question at all that admits of a numerical reply. Thus we can ask of {Carter, Reagan} 'How many feet do the members have?'.
     From: Palle Yourgrau (Sets, Aggregates and Numbers [1985], 'On Numbering')
     A reaction: This is his objection to the Fregean idea that once you have fixed the members of a set, you have thereby fixed the unique number that belongs with the set.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
There are 'conceptual' explanations, with their direction depending on complexity [Schnieder]
     Full Idea: The direction of conceptual explanations seems to be owed to factors of conceptual complexity and primitiveness.
     From: Benjamin Schnieder (Truth-making without Truth-makers [2006], p.33), quoted by David Liggins - Truth-makers and dependence 10.2
     A reaction: Schnieder proposes that there are just 'causal' and 'conceptual' explanations. Liggins objects that there are other types of dependence which offer explanations.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?