Combining Philosophers

All the ideas for Eubulides, Peter Koellner and Leucippus

unexpand these ideas     |    start again     |     specify just one area for these philosophers


10 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
5. Theory of Logic / L. Paradox / 1. Paradox
If you know your father, but don't recognise your father veiled, you know and don't know the same person [Eubulides, by Dancy,R]
     Full Idea: The 'undetected' or 'veiled' paradox of Eubulides says: if you know your father, and don't know the veiled person before you, but that person is your father, you both know and don't know the same person.
     From: report of Eubulides (fragments/reports [c.390 BCE]) by R.M. Dancy - Megarian School
     A reaction: Essentially an uninteresting equivocation on two senses of "know", but this paradox comes into its own when we try to give an account of how linguistic reference works. Frege's distinction of sense and reference tried to sort it out (Idea 4976).
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you say truly that you are lying, you are lying [Eubulides, by Dancy,R]
     Full Idea: The liar paradox of Eubulides says 'if you state that you are lying, and state the truth, then you are lying'.
     From: report of Eubulides (fragments/reports [c.390 BCE]) by R.M. Dancy - Megarian School
     A reaction: (also Cic. Acad. 2.95) Don't say it, then. These kind of paradoxes of self-reference eventually lead to Russell's 'barber' paradox and his Theory of Types.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Removing one grain doesn't destroy a heap, so a heap can't be destroyed [Eubulides, by Dancy,R]
     Full Idea: The 'sorites' paradox of Eubulides says: if you take one grain of sand from a heap (soros), what is left is still a heap; so no matter how many grains of sand you take one by one, the result is always a heap.
     From: report of Eubulides (fragments/reports [c.390 BCE]) by R.M. Dancy - Megarian School
     A reaction: (also Cic. Acad. 2.49) This is a very nice paradox, which goes to the heart of our bewilderment when we try to fully understand reality. It homes in on problems of identity, as best exemplified in the Ship of Theseus (Ideas 1212 + 1213).
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
10. Modality / A. Necessity / 8. Transcendental Necessity
Everything happens by reason and necessity [Leucippus]
     Full Idea: Nothing happens at random; everything happens out of reason and by necessity.
     From: Leucippus (fragments/reports [c.435 BCE], B002), quoted by (who?) - where?