Combining Philosophers

All the ideas for Eubulides, Geoffrey Gorham and Brian Clegg

unexpand these ideas     |    start again     |     specify just one area for these philosophers


32 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
     Full Idea: For a set to be 'well-ordered' it is required that every subset of the set has a first element.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
     Full Idea: Set theory made a closer study of infinity possible.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
Any set can always generate a larger set - its powerset, of subsets [Clegg]
     Full Idea: The idea of the 'power set' means that it is always possible to generate a bigger one using only the elements of that set, namely the set of all its subsets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
     Full Idea: Axiom of Extension: Two sets are equal if and only if they have the same elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
     Full Idea: Axiom of Pairing: For any two sets there exists a set to which they both belong. So you can make a set out of two other sets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
     Full Idea: Axiom of Unions: For every collection of sets there exists a set that contains all the elements that belong to at least one of the sets in the collection.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
     Full Idea: Axiom of Infinity: There exists a set containing the empty set and the successor of each of its elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This is rather different from the other axioms because it contains the notion of 'successor', though that can be generated by an ordering procedure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
     Full Idea: Axiom of Powers: For each set there exists a collection of sets that contains amongst its elements all the subsets of the given set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: Obviously this must include the whole of the base set (i.e. not just 'proper' subsets), otherwise the new set would just be a duplicate of the base set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
     Full Idea: Axiom of Choice: For every set we can provide a mechanism for choosing one member of any non-empty subset of the set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This axiom is unusual because it makes the bold claim that such a 'mechanism' can always be found. Cohen showed that this axiom is separate. The tricky bit is choosing from an infinite subset.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
     Full Idea: Axiom of Existence: there exists at least one set. This may be the empty set, but you need to start with something.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
     Full Idea: Axiom of Specification: For every set and every condition, there corresponds a set whose elements are exactly the same as those elements of the original set for which the condition is true. So the concept 'number is even' produces a set from the integers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: What if the condition won't apply to the set? 'Number is even' presumably won't produce a set if it is applied to a set of non-numbers.
5. Theory of Logic / L. Paradox / 1. Paradox
If you know your father, but don't recognise your father veiled, you know and don't know the same person [Eubulides, by Dancy,R]
     Full Idea: The 'undetected' or 'veiled' paradox of Eubulides says: if you know your father, and don't know the veiled person before you, but that person is your father, you both know and don't know the same person.
     From: report of Eubulides (fragments/reports [c.390 BCE]) by R.M. Dancy - Megarian School
     A reaction: Essentially an uninteresting equivocation on two senses of "know", but this paradox comes into its own when we try to give an account of how linguistic reference works. Frege's distinction of sense and reference tried to sort it out (Idea 4976).
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you say truly that you are lying, you are lying [Eubulides, by Dancy,R]
     Full Idea: The liar paradox of Eubulides says 'if you state that you are lying, and state the truth, then you are lying'.
     From: report of Eubulides (fragments/reports [c.390 BCE]) by R.M. Dancy - Megarian School
     A reaction: (also Cic. Acad. 2.95) Don't say it, then. These kind of paradoxes of self-reference eventually lead to Russell's 'barber' paradox and his Theory of Types.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Removing one grain doesn't destroy a heap, so a heap can't be destroyed [Eubulides, by Dancy,R]
     Full Idea: The 'sorites' paradox of Eubulides says: if you take one grain of sand from a heap (soros), what is left is still a heap; so no matter how many grains of sand you take one by one, the result is always a heap.
     From: report of Eubulides (fragments/reports [c.390 BCE]) by R.M. Dancy - Megarian School
     A reaction: (also Cic. Acad. 2.49) This is a very nice paradox, which goes to the heart of our bewilderment when we try to fully understand reality. It homes in on problems of identity, as best exemplified in the Ship of Theseus (Ideas 1212 + 1213).
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
     Full Idea: Three views of mathematics: 'pure' mathematics, where it doesn't matter if it could ever have any application; 'real' mathematics, where every concept must be physically grounded; and 'applied' mathematics, using the non-real if the results are real.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.17)
     A reaction: Very helpful. No one can deny the activities of 'pure' mathematics, but I think it is undeniable that the origins of the subject are 'real' (rather than platonic). We do economics by pretending there are concepts like the 'average family'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
     Full Idea: With ordinary finite numbers ordinals and cardinals are in effect the same, but beyond infinity it is possible for two sets to have the same cardinality but different ordinals.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An ordinal number is defined by the set that comes before it [Clegg]
     Full Idea: You can think of an ordinal number as being defined by the set that comes before it, so, in the non-negative integers, ordinal 5 is defined as {0, 1, 2, 3, 4}.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
     Full Idea: The 'transcendental numbers' are those irrationals that can't be fitted to a suitable finite equation, of which π is far and away the best known.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
     Full Idea: The realisation that brought 'i' into the toolkit of physicists and engineers was that you could extend the 'number line' into a new dimension, with an imaginary number axis at right angles to it. ...We now have a 'number plane'.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.12)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
     Full Idea: It is a chicken-and-egg problem, whether the lack of zero forced forced classical mathematicians to rely mostly on a geometric approach to mathematics, or the geometric approach made 0 a meaningless concept, but the two remain strongly tied together.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
     Full Idea: As far as Kronecker was concerned, Cantor had built a whole structure on the irrational numbers, and so that structure had no foundation at all.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
     Full Idea: Paul Cohen showed that the Continuum Hypothesis is independent of the axioms of set theory.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
     Full Idea: The 'continuum hypothesis' says that aleph-one is the cardinality of the rational and irrational numbers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
14. Science / A. Basis of Science / 6. Falsification
If a theory is more informative it is less probable [Gorham]
     Full Idea: Popper's theory implies that more informative theories seem to be less probable.
     From: Geoffrey Gorham (Philosophy of Science [2009], 3)
     A reaction: [On p.75 Gorham replies to this objection] The point is that to be more testable they must be more detailed. He's not wrong. Theories are meant to be general, so they sweep up the details. But they need precise generalities and specifics.
Why abandon a theory if you don't have a better one? [Gorham]
     Full Idea: There is no sense in abandoning a successful theory if you have nothing to replace it with.
     From: Geoffrey Gorham (Philosophy of Science [2009], 2)
     A reaction: This is also a problem for infererence to the best explanation. What to do if your best explanation is not very good? The simple message is do not rush to dump a theory when faced with an anomaly.
14. Science / B. Scientific Theories / 1. Scientific Theory
Is Newton simpler with universal simultaneity, or Einstein simpler without absolute time? [Gorham]
     Full Idea: Is Newton's theory simpler than Einstein's, since there is only one relation of simultaneity in absolute time, or is Einstein's simpler because it dispenses with absolute time altogether?
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: A nice question, to which a good scientist might be willing to offer an answer. Since simultaneity is crucial but the existence of time is not, I would vote for Newton as the simpler.
Structural Realism says mathematical structures persist after theory rejection [Gorham]
     Full Idea: Structural Realists say that modern science achieves a true or 'truer' account of the world only with respect to its mathematical structure rather than its intrinsic qualities or nature. The structure carries over to new theories.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: At first glance I am unconvinced that when an old theory is replaced it neverthess contains some sort of 'mathematical structure' which endures and is worth preserving. No doubt Worrall, French and co have examples.
Structural Realists must show the mathematics is both crucial and separate [Gorham]
     Full Idea: Structural Realists must show that it is the mathematical aspects of the theories, not their content, that account for their success ….and that their structure and content can be clearly separated.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Their approach certainly seems to rely on mathematical types of science, so it presumably fits biology, geology and even astronomy less well.
14. Science / B. Scientific Theories / 3. Instrumentalism
Theories aren't just for organising present experience if they concern the past or future [Gorham]
     Full Idea: The strangeness of interpreting theories as mere tools for organising present experience is brought out clearly in sciences like cosmology and paleontology, which largely concern events in the remote past or future.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Not conclusive. An anti-realist has to interpret those sciences in terms of the current observations that are available.
For most scientists their concepts are not just useful, but are meant to be true and accurate [Gorham]
     Full Idea: The main difficulty with instrumentalism is its implausible account ot the meaning of theoretical claims and concepts. Most scientists take them to be straightforward attempts to describe the world. Most say they are useful because they are accurate.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Instrumentalism is seen as a Pragmatist view, and Dewey is cited.
14. Science / D. Explanation / 2. Types of Explanation / d. Consilience
Consilience makes the component sciences more likely [Gorham]
     Full Idea: The more unification and integration is found among the modern sciences, the less likely it seems it will have all been a dream.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: I believe this strongly. Ancient theories which were complex, wide ranging and false do not impress me. This is part of my coherence view of justification.
26. Natural Theory / A. Speculations on Nature / 1. Nature
Aristotelian physics has circular celestial motion and linear earthly motion [Gorham]
     Full Idea: Aristotelian physics assumed that celestial motion is naturally circular and eternal while terrestrial motion is naturally toward the center of the earth and final.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: The overthrow of this by Galileo and then Newton may have been the most dramatic revolution of the new science. It opened up the possibility of universal laws of physics.